Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Liquid water under nanoscale confinement has attracted intensive attention due to its pivotal role in understanding various phenomena across many scientific fields. MXenes serve an ideal paradigm for investigating the dynamic behaviors of nanoconfined water in a hydrophilic environment. Combining deep neural networks and an active learning scheme, here we elucidate the proton‐driven dynamics of water molecules confined between V2CTxsheets using molecular dynamics simulation. Firstly, we have found that the Eigen and Zundel cations can inhibit water‐induced oxidation by adjusting the orientation of water molecules, thus proposing a general antioxidant strategy. Besides, we also identified a hexagonal ice phase with abnormal bonding rules at room temperature, rather than only at ultralow temperatures as other studies reported, and further captured the proton‐induced water phase transition. This highlighted the importance of protons in the maintaining stable crystal phase and phase transition of water. Furthermore, we discussed the conversions of different water structures and water diffusivity with changing proton concentrations in detail. The results provide useful guidance in practical applications of MXenes including developing antioxidant strategies, identifying novel 2D water phases and optimizing energy storage and conversion.more » « lessFree, publicly-accessible full text available December 16, 2025
- 
            Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenesFree, publicly-accessible full text available December 1, 2025
- 
            Abstract MXenes are 2D materials with great potential in various applications. However, the degradation of MXenes in humid environments has become a main obstacle in their practical use. Here we combine deep neural networks and an active learning scheme to develop a neural network potential (NNP) for aqueous MXene systems with ab initio precision but low cost. The oxidation behaviors of super large aqueous MXene systems are investigated systematically at nanosecond timescales for the first time. The oxidation process of MXenes is clearly displayed at the atomic level. Free protons and oxides greatly inhibit subsequent oxidation reactions, leading to the degree of oxidation of MXenes to exponentially decay with time, which is consistent with the oxidation rate of MXenes measured experimentally. Importantly, this computational study represents the first exploration of the kinetic process of oxidation of super‐sized aqueous MXene systems. It opens a promising avenue for the future development of effective protection strategies aimed at controlling the stability of MXenes.more » « less
- 
            Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ( 14 C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14 C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14 C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
